

4th Quarter Emissions Testing Report 2017

OneSteel Recycling Hexham

4th Quarter Emissions Testing Report 2017

OneSteel Recycling Hexham

Client: OneSteel Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com

ABN 20 093 846 925

08-Dec-2017

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document 4th Quarter Emissions Testing Report 2017

Ref 60493017

Date 08-Dec-2017

Prepared by Dylan Turnbull

Reviewed by Chad Whitburn AECOM Approved Signatory

Revision History

Dov	Boyloien Date	Deteile	Authorised	
Rev Revision Date De		Details	Name/Position	Signature
0	08-Dec-2017	Report for Issue	Chad Whitburn Associate Director - Compliance Services	ault

Table of Contents

1.0	Introduct	ion	1
2.0	Sampling	g Plane Requirements	2
3.0	Methodo	logy	2 3 3 3
	3.1	NATA Accredited Methods	3
	3.2	Equipment Calibration	3
4.0	Sampling	Location	4
	4.1	Sampling Location Summary	4
5.0	Results	,	5
Appendix	х А		
	Field She	eets (17 pages)	Α
Appendix	х В		
	Laborato	ry Results (8 pages)	В
List of T	ables		
Table 1		Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 2		AECOM NATA Endorsed Methods	2 3
Table 3		Sampling Location Summary	4
Table 4		Shredder Baghouse Emission Results Summary, 23 November 2017	5
Table 5		Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals)	
		Results, 23 November 2017	6
Table 6		Hazardous Substances (Metals) Elemental Analysis Results, 23 November	

7

2017

1

1.0 Introduction

AECOM was appointed by OneSteel Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 23 November 2017 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 14892-0-M & 14892-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd NATA accreditation number 2562, performed the following analysis detailed in report number ME304956 R0:
 - Hazardous Substances (Metals).

Revision 0 – 08-Dec-2017 Prepared for – OneSteel Recycling Pty Ltd – ABN: 28 002 707 262

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean:
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

With the exception of point 'b', the sampling plane was in accordance with AS4323.1. The gas stream velocities at each sampling point were found to be 2.4 m/s. Please note that the bag house was not running at full capacity at the time of testing.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1 (NSW EPA TM-1)	USEPA (2000) Method 1	Selection of sampling positions
AS4323.2 (NSW EPA TM-15)	USEPA (2000) Method 5 under approved circumstances	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201 or 201A (as appropriate)	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 23 November 2017.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes ²
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes ²

¹ AS 4323.1 Section 4.1

The sampling location was ideal in terms of flow disturbances, but did not comply with AS 4323.1 point b) as the corrected velocity of the gas at all sampling points was found to be 2.4 m/s (minimum 3m/s).

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 23 November 2017

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m³)	0.62	100
Fine Particulate (PM ₁₀) (mg/m ³)	0.26	NA
Lead (mg/m³)	0.00017	5.0
Mercury (mg/m ³)	<0.00017	1.0
Total Hazardous Substances (Metals) (mg/m³)	0.0030	NA

Results from testing conducted on EPL Point 1 on 23 November 2017 are below the regulatory limits listed in EPL 5345.

Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 23 November 2017 Table 5

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	21.5	°C	294.7 K
Stack pressure (average)	1017	hPa	
Stack gas velocity (average, stack conditions)	2.4	m/s	
Stack gas flowrate (stack conditions)	1.1	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	0.99	m ³ /s	
Fine Particulate (PM ₁₀) Testing			
Test Period	7:36	-	9:07
Fine Particulate (PM ₁₀) Mass	0.3	mg	
Gas Volume Sampled	1.2	m^3	
Fine Particulate (PM ₁₀) Emission* ¹	0.26	mg/m ³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	0.26	mg/s	
Regulatory Limit	NA		
Total Particulate Testing			
Test Period	7:36	-	9:07
Total Particulate Mass	0.7	mg	
Gas Volume Sampled	1.1	m^3	
Total Particulate Emission*1	0.62	mg/m ³	
Total Particulate Mass Emission Rate*2	0.61	mg/s	
Regulatory Limit	100	mg/m³	
Hazardous Substances (Metals) Testing			
Test Period	7:36	-	9:07
Hazardous Substances (Metals) Mass	0.0030	mg	
Gas Volume Sampled	1.2	m^3	
Hazardous Substances (Metals) Emission*1	0.0026	mg/m³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.0026	mg/s	
Regulatory Limit	NA		
Moisture Content (%)	2.5		
Gas Density (dry at 1 atmosphere)	1.29	kg/m³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas
*2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture
content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 23 November 2017

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	<0.0002	<0.00017	<0.0002	<0.00017			<0.0002	<0.00017	<0.00017
Arsenic	<0.0002	<0.00017	<0.0002	<0.00017			<0.0002	<0.00017	<0.00017
Beryllium	<0.0002	<0.00017	<0.0002	<0.00017			<0.0002	<0.00017	<0.00017
Cadmium	0.0015	0.0013	0.00029	0.00025			0.002	0.0017	0.0017
Chromium	<0.001	<0.00086	0.00019	0.00016			0.00019	0.00016	0.00016
Cobalt	<0.0002	<0.00017	<0.0002	<0.00017			<0.0002	<0.00017	<0.00017
Copper	<0.0012	<0.001	0.00029	0.00025			0.00029	0.00025	0.00025
Lead	0.0002	0.00017	<0.0002	<0.00017			0.0002	0.00017	0.00017
Magnesium	<0.058	<0.05	<0.0002	<0.00017			<0.002	<0.0017	<0.0017
Manganese	<0.0018	<0.0015	<0.0094	<0.008			<0.0002	<0.00017	<0.00017
Mercury	<0.0002	<0.00017	<0.0002	<0.00017	<0.0001	<0.000086	<0.0002	<0.00017	<0.00017
Nickel	<0.0002	<0.00017	<0.0002	<0.00017			<0.0002	<0.00017	<0.00017
Selenium	0.0005	0.00043	<0.0013	<0.0011			0.0005	0.00043	0.00042
Thallium	<0.0002	<0.00017	<0.0002	<0.00017			<0.0002	<0.00017	<0.00017
Tin	<0.0004	<0.00034	0.000087	0.000074			0.000087	0.000074	0.000073
Vanadium	<0.0053	<0.0045	<0.0042	<0.0036			<0.0002	<0.00017	<0.00017
Zinc	<1.401	<1.2	<0.001	<0.00086			<0.0002	<0.00017	<0.00017
Total Hazardous Metals*	0.0022	0.0019	0.00048	0.00041	<0.0001	<0.000086	0.0030	0.0026	0.0026
Total Metals	0.0022	0.0019	0.00086	0.00073			0.0033	0.0028	0.0028

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

This page has been left blank intentionally.

Appendix A

Field Sheets (17 pages)

Appendix A Field Sheets (17 pages)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

OneSteel Hexham

AECOM's Project Number: 60493017

Emission Source: Shredder Stack

Date Sampled: 23-Nov-17

ANALYTE(S) METHOD

Fine Particulate (PM10) NSW EPA OM - 5

Total Particulate NSW EPA TM - 15

Hazardous Substances (Metals) NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Dylan Turnbull

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:

23-Nov-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Test 1:

Stack/Duct Description: Shredder Stack Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Hazardous Substances (Metals)

		Measurement/Obse	rvations		
Stack Inter	nal Dimensions:				
Diameter OR Length/Wid	Length	0 mm Width	Cross Sectional Area	0.45 m	2
Equivalent		mm	sampling points=	12	
nearest dis Upstream (Total No. of sampling No. of sampling trave sampled =	PM2.5/10= erses/ports	12 12
No. Diame	ters = 6.6 estream Disturbance:	Fan Entry	No. of sampling point	PM2.5/10=	2
Downstrea No. Diame	m (m) = 2		traverse/port =	PM2.5/10=	6
	each sampling point, for		Exclusion of any sam numbers - comments		
	Α	В	PM10/2.5 A	PM2.5/1	
No.	Distance from wall	S-type Pitot distances			listances
1	33	3	33	3	
2	111	81	111	81	
3	225 535	195 505	225 535	195 505	
	649	619	649	619	
5 6	727	697	727	697	
7 8 9		331			
10 11 12 13 14 15			Check of total points minimum, (yes/no) - o		
17 18 19			General Comments:		
20 Signed:	126		Checked CBu	litind	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date: 23-Nov-17

Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start:	7:30	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	7:30	0	20.9	0.0
2	7:31	0	20.9	0.0
3	7:32	0	20.9	0.0
4	7:33	0	20.9	0.0
5	7:34	0	20.9	0.0
6	7:35	0	20.9	0.0
7	7:36	0	20.9	0.0
8	7:37	0	20.9	0.0
	Averages	0.0 ppm	20.9 %	0.0 %

Moisture content (M3): 0.99
Moisture percentage (M2): 0.60 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.6 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.8 %,(wet)	
H₂O:	0.60 %(=M2)			
Therefore	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

23-Nov-17 Date:

Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Fine Particulate (PM10) Test 1:

Test 2: **Total Particulate**

Test 3: Hazardous Substances (Metals)

Sampling time start:	9:00	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:00	0	20.9	0.0
2	9:01	0	20.9	0.0
3	9:02	0	20.9	0.0
4	9:03	0	20.9	0.0
5	9:04	0	20.9	0.0
6	9:05	0	20.9	0.0
7	9:06	0	20.9	0.0
8	9:07	0	20.9	0.0
	Averages:	0.0 ppm	20.9 %	0.0 %

Moisture content (M3): 0.98 Moisture percentage (M2): 2.39 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.2 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.4 %,(wet)	
H₂Ö:	2.39 %(=M2)			
Therefore	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date: 23-Nov-17 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10)
Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time:	7:30	Barometric Pr			hPa							
Page No. :	1 of 1	Pitot Correction		0.84	3							
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³							
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)							
	mi-t-	Max.										
Sampling Position	Distance	Differential	Max Temp.	Max Temp. (Ts)	Corrected Velocity							
No.			from far wall							°C	K	(Vs) m/s
140.	(mm)	ΔP, kilo	C		(43)11113							
		Pascals										
1/1	3	0.005	20.0	293.2	2.4							
1/2	81	0.005	20.0	293.2	2.4							
1/3	195	0.005	20.0	293.2	2.4							
1/4	505	0.005	20.0	293.2	2.4							
1/5	619	0.005	20.0	293.2	2.4							
1/6	697	0.005	20.0	293.2	2.4							
2/1	3	0.005	20.0	293.2	2.4							
2/2	81	0.005	20.0	293.2	2.4							
2/3	195	0.005	20.0	293.2	2.4							
2/4	505	0.005	20.0	293.2	2.4							
2/5	619	0.005	20.0	293.2	2.4							
2/6	697	0.005	20.0	293.2	2.4							
Lio	007	0.000	20.0	200.2	Ex.T							
				1								
				+								
				_								
				+								
				1								
	1			*								
			1									
			5									
Average			20.0	293.2	2.4							

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): 0.5 mm
Absolute pressure in stack (hPa): 1017.05 hPa

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 23-Nov-17 Client: OneSteel Hexham

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

Sample Nozzle No.: fine10 Sample Nozzle Area (An): 5.81 x 10⁻⁵m²

 Sampling Port No.:
 1 to 2
 Thimble No:
 T368

 Page No:
 1 of 1
 Blank thimble No:
 0

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)

 Meter start:
 258.9824 Meter finish:
 258.9824 Meter start:
 260.2437 Meter finish:
 260.2437 Meter finish:
 260.2437 Meter finish:
 9:09 Time finish:

 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:09
 9:

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1017 hPa (start); 1017 hPa (finish)

Meter start: 258.9846 Time start: 7:36

Meter correction factor (GMf): 1.0100

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:30	33	13.6	26.0	21.0		Yes
1/2	0:07:30	111	13.6	28.0	21.0		Yes
1/3	0:07:45	225	13.6	30.0	22.0		Yes
1/4	0:07:30	535	13.6	31.0	22.0		Yes
1/5	0:07:45	649	13.6	32.0	23.0		Yes
1/6	0:07:30	727	13.6	32.0	24.0		Yes
2/1	0:07:30	33	13.6	33.0	24.0		Yes
2/2	0:07:45	111	13.6	33.0	24.0		Yes
2/3	0:07:30	225	13.6	33.0	25.0		Yes
2/4	0:07:45	535	13.6	34.0	25.0		Yes
2/5	0:07:30	649	13.6	34.0	25.0) -	Yes
2/6	0:07:30	727	13.6	35.0	25.0		Yes
Averages				31.8	23.4	no result	
Meter Finish:		260.2422		Time Finish:	23.4	9:07	

Meter Finish: 260.2422
Total Condensate collected: 9 ml

Silica gel No(s) used: F26

STACK ANALYSIS SAMPLING OF TOTAL PARTICULATE

Date: 23-Nov-17 Client: OneSteel Hexham

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

Sample Nozzle No.: S6 Sample Nozzle Area (An): 9.16 x 10⁻⁵m²

Sampling Port No.: 1 to 2 Thimble No: T523

Page No: 1 of 1 Blank thimble No:

Leak Check (Pre-Sampling) Leak Check (Post Sampling)

 Meter start:
 390.1460 Meter finish:
 390.1460 Meter start:
 391.3726 Meter finish:
 391.3726 Meter finish:

 Time start:
 6:55 Time finish:
 6:56 Time start:
 9:10 Time finish:
 9:11

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1017 hPa (start); 1017 hPa (finish)

Meter start: 390.1476 Time start; 7:36

Meter correction factor (GMf); 1.0000

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:36	33	13.2	24.0	20.0	, op (o)	Yes
1/2	0:15:12	111	13.2	26.0	21.0		Yes
1/3	0:22:48	225	13.2	27.0	21.0		Yes
1/4	0:30:24	535	13.2	28.0	22.0		Yes
1/5	0:38:00	649	13.2	29.0	22.0		Yes
1/6	0:45:36	727	13.2	30.0	22.0		Yes
2/1	0:53:12	33	13.2	30.0	23.0		Yes
2/2	1:00:48	111	13.2	30.0	23.0		Yes
2/3	1:08:24	225	13.2	30.0	24.0		Yes
2/4	1:16:00	535	13.2	31.0	24.0		Yes
2/5	1:23:36	649	13.2	31.0	24.0		Yes
2/6	1:31:12	727	13.2	31.0	25.0		Yes
Augue				00.0	20.0	44.444	
Averages Meter Finish		391 3701		Z8.9	22.6	no result	

 Meter Finish:
 391.3701
 Time Finish:
 9:07

 Total Condensate collected:
 4 ml
 Silica gel No(s) used:
 135

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date: 23-Nov-17 OneSteel Hexham Client:

AECOM's Project No: 60493017

Shredder Stack Stack Description No.:

x 10⁻⁵m² G53 Sample Nozzle Area (An): Sample Nozzle No.: 9.5

Sampling Port No.: 1 to 2 Thimble No: 0

Blank thimble No: Page No: 1 of 1

Leak Check (Pre-Sampling) Leak Check (Post Sampling)

Meter start: 550.2776 Meter finish: 550.2776 Meter start: 551.5530 Meter finish: 551.5530 6:57 Time finish: 9:12 Time finish: Time start: 6:58 Time start: 9:13

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1017 hPa (start); 1017 hPa (finish)

550.2790 Time start: 7:36 Meter start:

Meter correction factor (GMf): 1.0100

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:36	33	13.9	27.0	21.0		Yes
1/2	0:15:12	111	13.9	29.0	22.0		Yes
1/3	0:22:48	225	13.9	32.0	22.0		Yes
1/4	0:30:24	535	13.9	34.0	23.0		Yes
1/5	0:38:00	649	13.9	36.0	23.0		Yes
1/6	0:45:36	727	13.9	35.0	24.0		Yes
2/1	0:53:12	33	13.9	34.0	24.0		Yes
2/2	1:00:48	111	13.9	33.0	25.0	- 1	Yes
2/3	1:08:24	225	13.9	33.0	25.0		Yes
2/4	1:16:00	535	13.9	32.0	26.0		Yes
2/5	1:23:36	649	13.9	32.0	26.0		Yes
2/6	1:31:12	727	13.9	32.0	26.0	7 - 1	Yes
Averages				32.4	23.9	no result	

Total Condensate collected: 8 ml Silica gel No(s) used: DT10

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date: 23-Nov-17 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time:	9:15	Barometric Pr			hPa
Page No. :	1 of 1	Pitot Correction		0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type:	S				(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	(Vs) m/s
1/1	3	0.005	23.0	296.2	2.4
1/2	81	0.005	23.0	296.2	2.4
1/3	195	0.005	23.0	296.2	2.4
1/4	505	0.005	23.0	296.2	2.4
1/5	619	0.005	23.0	296.2	2.4
1/6	697	0.005	23.0	296.2	2.4
0/4	-	0.005	20.0	200.0	2.4
2/1	3	0.005	23.0	296.2	2.4
2/2	81	0.005	23.0	296.2	2.4
2/3	195	0.005	23.0	296.2	2.4
2/4	505	0.005	23.0	296.2	2.4
2/5	619	0.005	23.0	296.2	2.4
2/6	697	0.005	23.0	296.2	2.4
E T					
	-				
Average			23.0	296.2	2.4

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): 0.5 mm
Absolute pressure in stack (hPa): 1017.05 hPa

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date: 23-Nov-17 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oixdi	sable Mercury	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCl (mg) (lf Required) (5C)
Antimony	<0.0002	<0.0002	MM314222323	accerains.	
Arsenic	<0.0002	<0.0002		e e e e e e e e e e e e e e e e e e e	
Beryllium	<0.0002	<0.0002		ASSESSED OF	SYMMONIAN CO.
Cadmium	0.0015	0.00029		Nessessinin	
Chromium	<0.001	0.00019	900000000000000000000000000000000000000		
Cobalt	<0.0002	<0.0002	in contract the contract of the	adical value is	
Copper	<0.0012	0.00029	Marco Mareco	ances estimate	
Lead	0.0002	<0.0002	200000000000000000000000000000000000000		
Magnesium	<0.058	<0.0002	0.0000000000000000000000000000000000000	26.200000000000000000000000000000000000	
Manganese	<0.0018	< 0.0094	633500000033	300000000000000000000000000000000000000	
Mercury	<0.0002	< 0.0002	< 0.0001	< 0.0001	< 0.0001
Nickel	<0.0002	< 0.0002	XXXXXXXX		\$4.4Wmmm
Selenium	0.0005	< 0.0013		Jordanna.	
Thallium	<0.0002	<0.0002	000000000000000000000000000000000000000		
Tin	<0.0004	0.000087	***************************************	ricionese de section de la constante de la con	
Vanadium	< 0.0053	<0.0042		HERMAN AT	260000000000000000000000000000000000000
Zinc	<1.401	< 0.001	9-24-00-2005-6		

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Date: 23-Nov-17 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	<0.0002	< 0.00017	< 0.0002	< 0.00017			< 0.0002	< 0.00017	< 0.00017
Arsenic	<0.0002	< 0.00017	<0.0002	< 0.00017			< 0.0002	< 0.00017	< 0.00017
Beryllium	<0.0002	< 0.00017	<0.0002	< 0.00017	Creekeesesses		< 0.0002	< 0.00017	< 0.00017
Cadmium	0.0015	0.0013	0.00029	0.00025	E-F-F-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-		0.002	0.0017	0.0017
Chromium	<0.001	<0.00086	0.00019	0.00016			0.00019	0.00016	0.00016
Cobalt	< 0.0002	< 0.00017	<0.0002	< 0.00017			< 0.0002	< 0.00017	< 0.00017
Copper	<0.0012	< 0.001	0.00029	0.00025	ELECTRON COLORS		0.00029	0.00025	0.00025
Lead	0.0002	0.00017	<0.0002	< 0.00017	British Colores		0.0002	0.00017	0.00017
Magnesium	<0.058	< 0.05	<0.0002	< 0.00017			< 0.002	< 0.0017	< 0.0017
Manganese	<0.0018	< 0.0015	<0.0094	<0.008			< 0.0002	< 0.00017	<0.00017
Mercury	<0.0002	< 0.00017	< 0.0002	< 0.00017	< 0.0001	<0.000086	< 0.0002	< 0.00017	< 0.00017
Nickel	<0.0002	< 0.00017	<0.0002	< 0.00017			<0.0002	< 0.00017	< 0.00017
Selenium	0.0005	0.00043	<0.0013	< 0.0011			0.0005	0.00043	0.00042
Thallium	<0.0002	< 0.00017	<0.0002	< 0.00017	production of	ERRIGIO COOL	<0.0002	< 0.00017	<0.00017
Tin	<0.0004	< 0.00034	0.000087	0.000074			0.000087	0.000074	0.000073
Vanadium	< 0.0053	< 0.0045	< 0.0042	< 0.0036		CHIEF CHARLES	< 0.0002	< 0.00017	< 0.00017
Zinc	<1.401	<1.2	< 0.001	< 0.00086		E3555555555555	< 0.0002	<0.00017	<0.00017
Total Hazardous Metals*	0.0022	0.0019	0.00048	0.00041	<0.0001	<0.000086	0.0030	0.0026	0.0026
Total Metals	0.0022	0.0019	0.00086	0.00073			0.0033	0.0028	0.0028

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

23-Nov-17 Date:

OneSteel Hexham Client:

AECOM's Project No:

60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

Average barometric 1.2702 m³

Average gas meter temp. (T_{M.2}):

27.6 °C

pressure (PRARO)

1017 hPa

300.8 K

Average pressure at

meter (P_{M.2})

1017.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

1.1579 m³

(B) PM10 concentration at standard conditions

Blank thimble No.:

Blank weight:

g 0.0003 q

Thimble No. used: Final PM10 Weight (Mp1):

PM10 Concentration (C1):

0.00030 g

PM10 Weight

0.00026 g/m3 (0°C, dry gas, 1atm pressure)

1atm pressure)

;and C2 =

 $=M_{p1}/MV_4=$

0.26 mg/m3 (0°C, dry gas,

CO₂ Basis Average CO2%: 12 %

Therefore, C.:

= Ca x 12/CO2% =

0.00026 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

and Cc1 =

0.26 mg/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

7 %

Average O2%:

20.9 %

0.0 %

Therefore, Ch:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

0.036 g/m3 (0°C, dry gas, 1atm pressure,

0,)

;and Cb1 =

36 mg/m3 (0°C, dry gas, 1atm pressure,

a mL (=grams)

108)

(recorded on

Laboratory Form

02)

(C) Moisture content

Silica Gel Number:

F26

V. =

10.7 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) =

0.0120

Volume of Water Vapour Condensed (Vwsg(std)) =

0.0143

Therefore, Bws =

(Vwc(std)+Vwsn(std)) $(V_{wc(std)}+V_{wsq(std)}+V_{m(std)})$

B_{ws} =

2.22 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c): 1.30 kg/m³ (0°C

1.30 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 1.210 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 2.40 m/s

(ii) Average of post-sampling velocities: 2.40 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

2.40 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 1.09 \text{ m}^3/\text{s} \text{ (stack conditions)}$ Qstd = Qstack x $Ps \times (Tstd) \times (100 - B_w)$

Ps x (Tstd) x (100 - B_w) (Pstd) (Ts) 100

Qstd = $1.0 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

 $Rm = C_{1a} \times Qstd = 0.00026 \quad g/s (0^{\circ}C, dry gas, 1 atm pressure)$ $= 0.26 \quad mg/s (0^{\circ}C, dry gas, 1 atm pressure)$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

23-Nov-17

OneSteel Hexham Client:

AECOM's Project No:

60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.2225 m3

Average barometric

Average gas meter temp. (T_{M.2}):

25.8 °C

pressure (PRARO)

1017 hPa

299.0 K

Average pressure at meter

(P_{M.2})

1017.00 hPa

Sample gas volume (MV₄); (0°C, dry

Total Particulate Concentration (C1):

gas, 1 atm pressure):

1.1211 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No .:

T523

 $=M_{p1}/MV_4=$

Blank weight:

Thimble No. used: Final Total Particulate Weight (Mp1):

0.00070 g

Total Particulate Weight

0.00062 g/m3 (0°C, dry gas, 1atm pressure)

;and C2 =

0.62 mg/m3 (0°C, dry gas;

1atm pressure)

CO2 Basis

12 %

Average CO2%:

0.0 %

Therefore, Cc:

= Ca x 12/CO2% =

0.00062 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

0.62 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

O, Basis

Average O2%:

20.9 %

Therefore, Ch:

=Ca x (21 - O_{2ref}%)/(21 - O_{2mea}%)

0.087 g/m3 (0°C, dry gas, 1atm pressure,

7% 0,)

;and Cb1 =

87 mg/m3 (0°C, dry gas, 1atm pressure,

4 mL (=grams)

108)

(recorded on

Laboratory Form

7% 02)

(C) Moisture content

Silica Gel Number:

135

V. =

16.2 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) =

0.0053

Volume of Water Vapour Condensed (Vwsg(std)) =

0.0216

Therefore, Bws =

(Vwc(std)+Vwsq(std)) $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} =

2.35 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

1.28 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling:

(ii) Re-calculated gas density based on moisture

content in (c):

1.30 kg/m3 (0°C, wet, 1 atm pressure) 1.29 kg/m3 (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (273.2+Ts) (1013.25)

1.210 kg/m3 (stack conditions, wet)

2.40 m/s (stack conditions, wet)

(E) Gas Velocities

2.40 m/s (i) Average of pre-sampling velocities:

(ii) Average of post-sampling velocities: 2.40 m/s

N/A m/s (iii) Average of while-sampling velocities:

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs): N/A m/s (stack conditions, wet) (Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

1.09 m3/s (stack conditions) Vs x A = Ostack =

Ps x (Tstd) x (100 - Bw) Qstd = Qstack x 100 (Pstd) (Ts)

1.0 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

Cta x Qstd = 0.00061 g/s (0°C, dry gas, 1 atm pressure Rm = mg/s (0°C, dry gas, 1 atm pressure 0.61

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

23-Nov-17 Date:

AECOM's Project No:

Client: OneSteel Hexham 60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

Average barometric 1.2847 m3

Average gas meter temp. (T_{M,2}):

28.2 °C

pressure (PBARO)

1017 hPa

301.4 K

Average pressure at meter

(P_{M2})

1017.00 hPa

Sample gas volume (MV4); (0°C, dry

gas, 1 atm pressure):

1.1688 m3

(B) Metals concentration at standard conditions

Blank thimble No.: Thimble No. used:

Blank weight: Metals Weight

0.000003 g

Final Metals Weight (Mp1):

Metals Concentration (C1):

0.00000 g

 $=M_{p1}/MV_4=$

2.6E-06 g/m3 (0°C, dry gas,

1atm pressure)

;and C2 =

0.0026 mg/m3 (0°C, dry gas, 1atm pressure)

CO2 Basis

12 %

Average CO2%:

0.0 %

Therefore, Cc:

= Ca x 12/CO2% =

0.0000026 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO2)

and Cc1 =

0.0026 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO2)

O₂ Basis 7 %

Average O2%:

20.9 %

Therefore, Ch:

=Ca x (21 - O_{2ref}%)/(21 - O_{2mea}%)

0.00036 g/m3 (0°C, dry gas, 1atm pressure,

7% 00)

;and Cb1 =

0.36 mg/m3 (0°C, dry gas, 1atm pressure,

7% 02)

(C) Moisture content

Silica Gel Number:

DT10

V. =

15.5 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) = Volume of Water Vapour Condensed (Vwsq(std)) = 0.0107

(recorded on Laboratory Form 108)

mL (=grams)

0.0207

Therefore, Bws =

(Vwc(sta)+Vwsq(sta))

(Vwc(std)+Vwsq(std)+Vm(std))

B_{ws} =

2.61 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling:

1.28 kg/m3 (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.30 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

1.210 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

2.40 m/s

(ii) Average of post-sampling velocities:

2.40 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 2.40 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Ostd =

1.09 m3/s (stack conditions)

Qstd = Qst

(Tstd) x (100 - B_w)

100

(1-

1.0 m³/s (0°C, dry gas, 1 atm pressure)

(Ts)

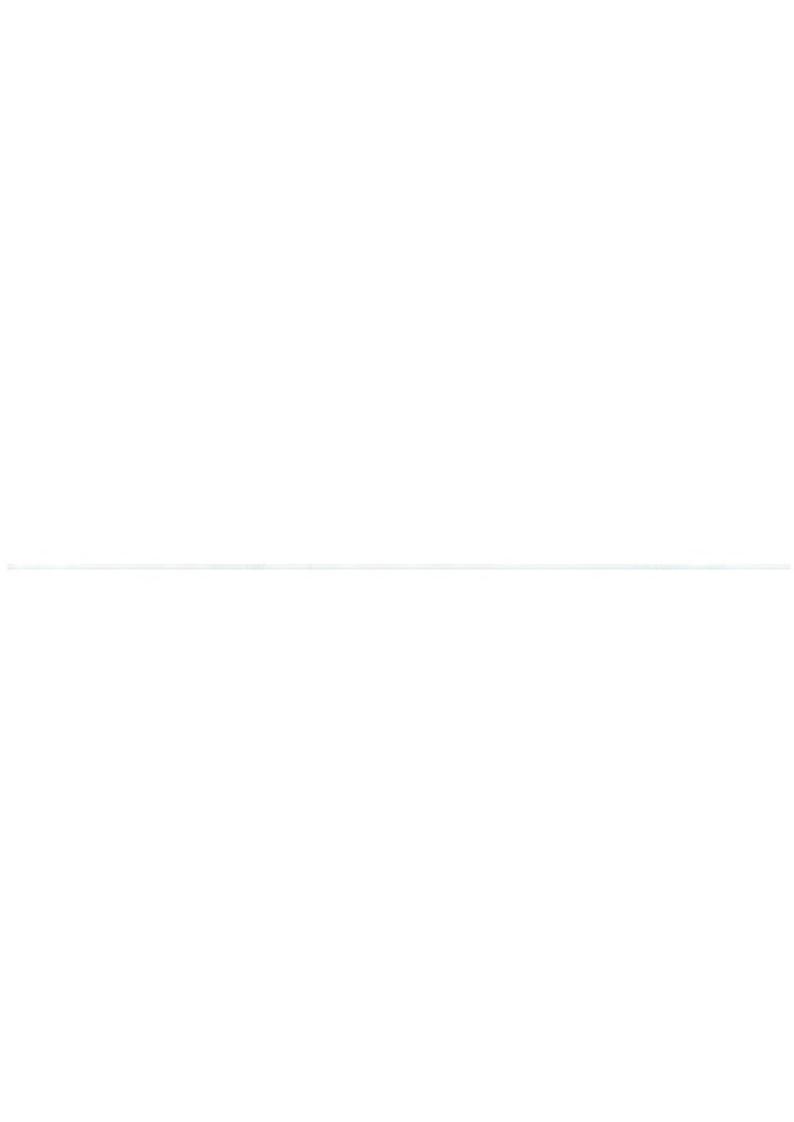
(G) Mass Emission Rate

$$Rm = C_{1a} \times Qstd = 0.0000026 \quad g/s (0^{\circ}C, dry gas, 1 atm pressure$$

$$= 0.0026 \quad mg/s (0^{\circ}C, dry gas, 1 atm pressure)$$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31


EMISSION MONITORING RESULTS, SHREDDER STACK ONESTEEL HEXHAM

23-Nov-17
FINE PARTICULATE (PM10)
TOTAL PARTICULATE
HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions:		
Stack internal diameter at test location	760 mm	
Stack gas temperature (average)	21.5 °C	294.7 K
Stack pressure (average)	1017 hPa	
Stack gas velocity (average, stack conditions)	2.4 m/s	
Stack gas flowrate (stack conditions)	1.1 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	0.99 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	7:36	9:07
Fine Particulate (PM10) Mass	0.3 mg	
Gas Volume Sampled	1.2 m ³	
Fine Particulate (PM10) Emission*1	0.26 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	0.26 mg/s	
Regulatory Limit	NA	
Total Particulate Testing		
Test Period	7:36	9:07
Total Particulate Mass	0.7 mg	
Gas Volume Sampled	1.1 m ³	
Total Particulate Emission*1	0.62 mg/m ³	
Total Particulate Mass Emission Rate*2	0.61 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing	1 2 2 2	3-2
Test Period	7:36	9:07
Hazardous Substances (Metals) Mass	0.0030 mg	
Gas Volume Sampled	1.2 m ³	
Hazardous Substances (Metals) Emission*1	0.0026 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.0026 mg/s	
Regulatory Limit	NA	
Moisture Content (%)	2.5	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin: AECOM - Newcastle Report: 14892-0-P Page 1 of 1

Project: 60493017

Description: Stack Emission Samples **Date:** 05-Dec-17

Received: 30-Nov-17

Report To: James Lang Copy to: FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble ID		Volume (mL)	Total Particulate Matter (g)
T368	Filter	- ₹	0.0003
T523	Filter		0.0007

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Note: Sampled by Client

Reported By:

Michael Campbell

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin: AECOM - Newcastle Report: 14892-0-M Page 1 of 1

Project: 60493017

Received: 30-Nov-17

Report To: James Lang Copy to: FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)	
135	16.2	
DT10	15.5	
F26	10.7	

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Reported By:

Michael Campbell

lell

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

ANALYTICAL REPORT

CLIENT DETAILS .

Contact

Client

Cye Buckland

AECOM Australia Pty Ltd

Address 17 Warabrook Boulevard

Warabrook

SYDNEY NSW 2304

02 8295 3600

Telephone 02 8934 0001 Facsimile

cye.buckland@aecom.com Email

Project Order Number

60493017-2.1 60493017-2.1

Samples 12 LABORATORY DETAILS

Manager Laboratory

Address

Adam Atkinson

SGS Melbourne EH&S

10/585 Blackburn Road

Notting Hill Victoria 3168

+61395743200 Telephone

+61395743399 Facsimile

Au.SampleReceipt.Melbourne@sgs.com ME304956 R0

SGS Reference

Date Received

Date Reported

24 Nov 2017

05 Dec 201

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

MING

Weiming Dai Inorganic Supervisor MING

Weiming Dai Senior Chemist

	5	mple Number Sample Matrix Sample Name	ME304956.001 Filter Flakt 1 Metals 1	ME304956.002 Filter Metals 12	ME304956.003 Impinger Solution Flakt 1 Metals 3	ME304956,004 Impinger Solution Flakt 1 Metals 4
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29	Method: EPA		sted: 4/12/2017			
metals in Filters in 25 ETC IIIA-1400.1 E.III 25.02 GOETA III 25	method: El Fi					
Sb	µg total	0.2	<0.2	<0.2	-	*
As	µg total	0.2	<0.2	0.2	-	-
Be	µg total	0.2	<0.2	<0.2	-	-
Cd	µg total	0.2	1.6	<0.2	•	
Cr	µg total	0.2	0.8	1.0		
Co	µg total	0.2	<0.2	<0.2		-
Cu	µg total	0.2	1.1	1.0	7	
Pb	µg total	0.2	0.4	0.2		
Mg	µg total	2	41	58		140
Mn	µg total	0.2	0.8	1.0		
Hg	µg total	0.2	<0.2	<0.2		
Ni .	µg total	0.2	<0.2	0.2		
Se	µg total	0.2	0.3	<0.2		
П	µg total	0.2	<0.2	<0.2		9*7
Sn	µg total	0.2	0.3	0.4		
V	µg total	0.2	2.0	2.9		
Zn	µg total	0.2	1000	1400		
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total)	Method: EP	A29_METIME	Tested: 4/12/2	2017		
Sb	µg total	0.1			<0.1	<0.1
As	µg total	0.1			<0.1	<0.1
Be	µg total	0.1			<0.1	<0.1
Cd	µg total	0.1			<0.1	0.4
Cr	µg total	0.1			<0.1	0.3
Co	µg total	0.1			<0.1	<0.1
Cu	µg total	0.1			<0.1	0.5
Pb	µg total	0.1			<0.1	<0.1
Mg	µg total	0.1			<0.1	<0.1
Mn	µg total	0.1			<0.1	3.5
Hg	µg total	0.1	-		<0.1	<0.1
Ni .	µg total	0.1	- 2		<0.1	0.1
Se	µg total	0.1			0.6	0.7
TI	µg total	0.1			<0.1	<0.1
Sn	µg total	0.1			<0.1	9.9
					0.7	2.6
	µg total	0.1				
V Zn	µg total µg total	0.1			<0.1	<0.1

ANALYTICAL REPORT

ME304956 R0

The state of the s		ample Number Sample Matrix Sample Name	ME304956.005 Impinger Solution Metals 8A	ME304956.006 Impinger Solution Metals 9	ME304956.007 Impinger Solution Flakt 1 Metals 5A	ME304956.008 Impinger Solution Flakt 1 Metals 5C
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 US	EPA M29 Method: EPA	A29_FILT Tes	sted: 4/12/2017			
Sb	µg total	0.2	-			7
As	µg total	0.2			-	
Be	µg total	0.2				
Cd	μg total	0.2				
er e e e e e e e e e e e e e e e e e e	μg total	0.2			-	4
Co	µg total	0.2				-
Cu	µg total	0.2		-		
rb	µg total	0.2				
de	µg total	2	40			2.
tn	µg total	0.2				
g	μg total	0.2	2			-
i	µg total	0.2	-			
е	µg total	0.2				
	µg total	0.2	1.2		4	
n	µg total	0.2				
	µg total	0.2				
^c n	μg total	0.2				
Metals in Impingers M29 ETC MA-1400.IMP.M29.06	(ug total) Method: EF	A29_METIMP	Tested: 1/12/2	017		
Sb	µg total	0.1	<0.1	<0.1		
As	μg total	0.1	<0.1	<0.1	+	
e	μg total	0.1	<0.1	<0.1		
d	µg total	0.1	<0.1	<0.1		
er .	µg total	0.1	<0.1	<0.1	-	
co	µg total	0.1	<0.1	<0.1		
Cu Cu	μg total	0.1	0.2	<0.1	-	-
b	µg total	0.1	<0.1	<0.1		
Mg	µg total	0.1	<0.1	<0.1		
	µg total	0.1	0.8	8.6		
Mn				<0.1	<0.1	
	µg total	0.1	<0.1	-0.1		<0.1
de		0.1	<0.1	<0.1	-	<0.1
19 N	µg total					
ig ii	µg total	0.1	<0.1	<0.1		-
19 Ni Se	µg total µg total µg total	0.1 0.1	<0.1 0.4	<0.1 0.9	:	
Hg Ni Se TI	µg total µg total µg total µg total	0.1 0.1 0.1	<0.1 0.4 <0.1	<0.1 0.9 <0.1		
Mn Hg Ni Se TI V Zn	µg total µg total µg total µg total µg total	0.1 0.1 0.1	<0.1 0.4 <0.1 <0.1	<0.1 0.9 <0.1 9.2		

		mple Number Sample Matrix Sample Name	Impinger	ME304956.010 Impinger Solution Metals 11	ME304956.011 KMnO4 Flakt 1 Metals 5B	ME304956.012 KMnO4 Metals 10
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29	Method: EPA		ested: 4/12/2017			
Sb	µg total	0.2	2		4	
As	µg total	0.2				
Be	µg total	0.2	-			
Cd	µg total	0.2		-		
Cr	µg total	0.2				-
Co	µg total	0.2				¥
Cu	µg total	0.2				
Pb	µg total	0.2				
Mg	µg total	2		-		
Mn	µg total	0.2				
Hg	µg total	0.2			-	
Ni	µg total	0.2				
Se	µg total	0.2				
TI .	µg total	0.2				
Sn	µg total	0.2				
V	µg total	0.2				
Zn	µg total	0.2				
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total)	Method: EP	A29_METIM	P Tested: 1/12/2	017		
Sb	µg total	0.1				
As	µg total	0.1				
Be	µg total	0.1		-		
Cd	µg total	0.1				-
Cr	µg total	0.1				
Co	µg total	0.1		-		
Cu	µg total	0.1				
Pb	µg total	0.1			100	-
Mg	µg total	0.1				-
Mn	µg total	0.1				
Hg	µg total	0.1	<0.1	<0.1	<0.1	<0.1
Ni .	µg total	0.1				
Se	µg total	0.1				
п	µg total	0.1				
Sn	µg total	0.1				
V	µg total	0.1				
Zn	µg total	0.1				
Sample Volume*	mL		98	250	400	100

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29 Method: EPA29_FILT

Parameter	QC Reference			MB	LCS %Recover
Sb	LB017281	µg total	0.2	<0.2	NA
As	LB017281	µg total	0.2	<0.2	NA
Ве	LB017281	µg total	0.2	<0.2	NA
Cd	LB017281	μg total	0.2	<0.2	NA
Cr	LB017281	µg total	0.2	<0.2	NA
Co	LB017281	µg total	0.2	<0.2	NA
Cu	LB017281	µg total	0.2	<0.2	NA
Pb	LB017281	µg total	0.2	<0.2	NA
Mg	LB017281	µg total	2	<2	NA
Mn	LB017281	µg total	0.2	<0.2	NA
Hg	LB017281	µg total	0.2	<0.2	NA
Ni	LB017281	µg total	0.2	<0.2	NA
Se	LB017281	µg total	0.2	<0.2	NA
TI	LB017281	µg total	0.2	<0.2	NA
Sn	LB017281	µg total	0.2	<0.2	NA
V	LB017281	µg total	0.2	<0.2	NA
Zn	LB017281	µg total	0.2	<0.2	NA

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Sb	LB017303	µg total	0.1	<0.1	102%
As	LB017303	µg total	0.1	<0.1	102%
Ве	LB017303	µg total	0.1	<0.1	93%
Cd	LB017303	µg total	0.1	<0.1	101%
Cr	LB017303	µg total	0.1	<0.1	98%
Co	LB017303	μg total	0.1	<0.1	96%
Cu	LB017303	µg total	0.1	<0.1	100%
Pb	LB017303	µg total	0.1	<0.1	107%
Mg	LB017303	µg total	0.1	<0.1	95%
Mn	LB017303	µg total	0.1	<0.1	100%
Hg	LB017303	µg total	0.1	<0.1	100%
Ni	LB017303	µg total	0.1	<0.1	98%
Se	LB017303	µg total	0.1	<0.1	104%
ті	LB017303	µg total	0.1	<0.1	107%
Sn	LB017303	µg total	0.1	<0.1	102%
V	LB017303	µg total	0.1	<0.1	98%
Zn	LB017303	µg total	0.1	<0.1	102%
Sample Volume*	LB017303	mL		1.0	NA

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

EPA 29

Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A. USEPA M29. and USEPA 6020A.

. Filters are digested using the appropriate sample preparation methods.

A representative sample is extracted in concentrated acid using microwave heating by the CEM-MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.

EPA29

This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA M29. USEPA 3015A and USEPA 6020A.

Prior to analysis, samples are be solubilised or digested using the appropriate sample preparation methods.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

NATA accreditation does not cover the performance of this service.

"Indicative data. theoretical holding time exceeded.

LOR Limit of Reporting

† Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance

The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example. Total PAHs. Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Totals" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP. less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced. except in full.

End of Report